Archivi categoria: algebra

L’identità di Brahmagupta

L’identità di Brahmagupta è l’osservazione che il prodotto di due numeri della forma $a^2+n b^2$ per $n$ fisso e $a,b,n \in \Z$ è di nuovo un numero della stessa forma. Infatti abbiamo \begin{align*} (a^2+n b^2)(c^2+n d^2) &= a^2 c^2 + … Continua a leggere

Pubblicato in altra algebra | Lascia un commento

Come costruire la misura di Haar di un gruppo di Lie

La misura di Haar di un gruppo di Lie permette di calcolare integrali sul gruppo, cioè $$ \int_{G}dU \, f(U)$$ ed è definita in maniera implicita come la misura che soddisfa certe condizioni. In particolare, è invariante per traslazioni nel … Continua a leggere

Pubblicato in gruppi e algebre di Lie | Lascia un commento

Gli autovettori comuni di due matrici simultaneamente diagonalizzabili

Supponiamo di avere due matrici $A$ e $B$. Sappiamo che se $A$ e $B$ sono diagonalizzabili e commutano, ovvero $[A,B]=0$, allora $A$ e $B$ sono diagonalizzabili simultaneamente. Ciò significa che esiste una base in cui tanto $A$ quanto $B$ sono … Continua a leggere

Pubblicato in altra algebra | Lascia un commento

I gruppi di ordine $p^2 q$ con $p, q$ primi

Come abbiamo classificato i gruppi di ordine $pq$, quelli di ordine $p^2$ e quelli di ordine $p^3$, ora procediamo a classificare i gruppi di ordine $p^2 q$ dove $p$ e $q$ sono primi. Purtroppo in questo caso ci accontentiamo di … Continua a leggere

Pubblicato in teoria dei gruppi | Lascia un commento

I gruppi di ordine $p^3$ con $p$ primo

Abbiamo già classificato in un precedente articolo i gruppi di ordine $p^2$. In questo articolo ripetiamo la classificazione per i gruppi di ordine $p^3$ con $p$ primo. Abbiamo già considerato esplicitamente il caso $p=2$ in un precedente articolo, perciò qui … Continua a leggere

Pubblicato in teoria dei gruppi | Lascia un commento