Iscriviti al blog tramite email
Categorie
- algebra (55)
- algebre di clifford (7)
- altra algebra (11)
- gruppi e algebre di Lie (12)
- teoria dei gruppi (25)
- altra matematica (27)
- combinatoria (3)
- epidemiologia (3)
- matematica quotidiana (4)
- statistica (17)
- analisi (43)
- altra analisi (13)
- equazioni differenziali (4)
- Fourier (3)
- integrali (6)
- matrici casuali (5)
- serie (4)
- spazi di hilbert (8)
- astrofisica e cosmologia (20)
- astronomia (2)
- equazioni del razzo (5)
- fluidodinamica stellare (5)
- meccanica celeste (8)
- fisica classica (18)
- elettromagnetismo (8)
- meccanica classica (10)
- fisica statistica e della materia (55)
- fisica della materia (14)
- fisica statistica pura (20)
- modello di Ising (12)
- simulazioni Monte Carlo (2)
- transizione BKT (7)
- forme differenziali e co (16)
- meccanica quantistica (36)
- relatività generale (15)
- relatività ristretta (9)
- teoria dei campi (52)
- varie (17)
- altro (12)
- informatica (4)
- liste e guide (1)
- algebra (55)
-
Articoli recenti
Archivi categoria: altra analisi
La disuguaglianza isoperimetrica
Sia $\Omega \subset \R^n$ un sottoinsieme di $\R^n$. Sia $V$ il volume $n$-dimensionale di $\Omega$ e $A$ l’area $(n-1)$-dimensionale del bordo $\partial \Omega$ di $\Omega$. Allora vale la disuguaglianza $$ A^n \geq C_n V^{n-1} \qquad C_n = n^n \frac{\pi^{n/2}}{\Gamma(1+n/2)}$$ Le … Continua a leggere
Pubblicato in altra analisi
Lascia un commento
La disuguaglianza di Wirtinger
La disuguaglianza di Wirtinger è una famiglia di disuguaglianze valida per funzioni di una variabile reale. Consideriamo una funzione derivabile $y: [0,L] \to \R$. Allora sotto certe ipotesi su $y$ che vediamo tra un momento, vale la seguente disuguaglianza, $$\int_0^{L} … Continua a leggere
Pubblicato in altra analisi
Lascia un commento
Derivata dell’esponenziale di una matrice
Consideriamo una matrice $X(t)$ che dipende da un parametro $t$. In questo articolo calcoliamo la derivata dell’esponenziale di $X(t)$. Abbiamo $$ \dv{}{t} e^{X(t)} = e^{X(t)} \bqty{ \frac{1 -e^{-\mathrm{ad}_{X(t)}}} {\mathrm{ad}_{X(t)}} \pqty{\dv{X(t)}{t}} }$$ dove $\mathrm{ad}_A$ è la mappa tale che $$\mathrm{ad}_A (B) … Continua a leggere
Pubblicato in altra analisi
Lascia un commento
$\phi^4$ in $0$ dimensioni #4: somma di Borel
Nei precedenti articoli della serie abbiamo visto prima due serie perturbative e poi la soluzione analitica della teoria $\phi^4$ in $0$ dimensioni. Le serie perturbative erano solo serie asintotiche: cioè forniscono una buona approssimazione sommando un numero finito di termini, … Continua a leggere
Pubblicato in altra analisi
Lascia un commento
$\phi^4$ in $0$ dimensioni #3: soluzione analitica
Nei precedenti articoli della serie abbiamo visto due diverse serie perturbative per la teoria $\phi^4$ in $0$ dimensioni. In particolare le due serie erano solo serie asintotice valide per $g$ molto piccolo o molto grande, ma non convergenti in nessun … Continua a leggere
Pubblicato in altra analisi
Lascia un commento