Iscriviti al blog tramite email
Categorie
- algebra (59)
- algebre di clifford (7)
- altra algebra (11)
- gruppi e algebre di Lie (12)
- teoria dei gruppi (29)
- altra matematica (27)
- combinatoria (3)
- epidemiologia (3)
- matematica quotidiana (4)
- statistica (17)
- analisi (44)
- altra analisi (13)
- equazioni differenziali (4)
- Fourier (3)
- integrali (7)
- matrici casuali (5)
- serie (4)
- spazi di hilbert (8)
- astrofisica e cosmologia (20)
- astronomia (2)
- equazioni del razzo (5)
- fluidodinamica stellare (5)
- meccanica celeste (8)
- fisica classica (18)
- elettromagnetismo (8)
- meccanica classica (10)
- fisica statistica e della materia (58)
- fisica della materia (14)
- fisica statistica pura (22)
- modello di Ising (13)
- simulazioni Monte Carlo (2)
- transizione BKT (7)
- forme differenziali e co (16)
- meccanica quantistica (37)
- relatività generale (15)
- relatività ristretta (9)
- teoria dei campi (54)
- varie (18)
- altro (12)
- informatica (5)
- liste e guide (1)
- algebra (59)
-
Articoli recenti
Archivi categoria: modello di Ising
Corrispondenza tra termodinamica quantistica e classica: il modello di Ising in 1D prima parte
Consideriamo il modello di Ising classico in una dimensione spaziale, con energia $$E = -J \sum_{\langle ij \rangle} s_{i} s_{j} -B \sum_i s_i$$ dove le $s_i = \pm 1$. Possiamo scrivere la funzione di partizione del modello termodinamico: $$Z = … Continua a leggere
Pubblicato in modello di Ising
Lascia un commento
Rinormalizzazione del modello di Ising in 1D
Consideriamo il modello di Ising con $N$ spin classici in una dimensione, con Hamiltoniana “ridotta” \begin{equation*} H = h \sum_i s_i + K \sum_{i} s_i s_{i+1} + CN \end{equation*} dove abbiamo introdotto una costante $C$ per convenienza futura e con … Continua a leggere
Pubblicato in modello di Ising
Lascia un commento
Modello di Ising in 2D: operatori di disordine e teoria di calibro
Abbiamo visto in uno scorso articolo che è possibile definire una funzione di correlazione per dei “difetti” nel modello di Ising in 2D. Questi fungono da parametri di disordine per il modello, nel senso che hanno fasi opposte rispetto alle … Continua a leggere
Pubblicato in modello di Ising
Lascia un commento
Modello di Ising in 2D: operatori di disordine
Consideriamo il modello di Ising in due dimensioni spaziali. Abbiamo degli spin classici $\sigma(\mathbf{r}) = \pm 1$ dove $\mathbf{r}$ indica il sito di un reticolo quadrato bidimensionale. L’Hamiltoniana contiene solo il termine d’interazione: $$H = -J \sum_{\langle\boldsymbol{r}, \boldsymbol{r}’\rangle} \sigma(\boldsymbol{r}) \sigma(\boldsymbol{r}’)$$ … Continua a leggere
Pubblicato in modello di Ising
Lascia un commento
Dualità di Kramers-Wannier nel modello di Ising
Consideriamo il modello di Ising classico in due dimensioni, dato dall’Hamiltoniana $$H = -J \sum_{\langle ij \rangle} s_{i} s_{j}$$ dove $i$ e $j$ sono i siti di un reticolo quadrato bidimensionale, $\langle ij \rangle$ indica primi vicini, $s_i = \pm … Continua a leggere
Pubblicato in modello di Ising
Lascia un commento