Archivi autore: CARAM-L

La disuguaglianza di Wirtinger

La disuguaglianza di Wirtinger è una famiglia di disuguaglianze valida per funzioni di una variabile reale. Consideriamo una funzione derivabile $y: [0,L] \to \R$. Allora sotto certe ipotesi su $y$ che vediamo tra un momento, vale la seguente disuguaglianza, $$\int_0^{L} … Continua a leggere

Pubblicato in altra analisi | Lascia un commento

Una disuguaglianza tra tracce di una matrice

Consideriamo una matrice complessa $A$. Allora abbiamo la disuguaglianza $$\abs{\tr(A)}^2 \leq r(A) \tr(A^\dagger A)$$ dove $r(A)$ è il rango di $A$. Per dimostrare questa disuguaglianza, utilizziamo la decomposizione di Schur, secondo cui una matrice $A$ arbitraria può essere scritta come … Continua a leggere

Pubblicato in altra algebra | Lascia un commento

Un caso particolare del prodotto tra esponenziali di matrici

La formula BCH ci dice che date due matrici $X$ e $Y$, allora $$e^X e^Y = e^Z \\ Z = X+Y + \frac12 [X,Y] + \frac{1}{12}\pqty{[X,[X,Y]]-[Y,[X,Y]]} + \cdots $$ dove la serie è infinita e dipende solo dai commutatori tra … Continua a leggere

Pubblicato in gruppi e algebre di Lie | Lascia un commento

Derivata dell’esponenziale di una matrice

Consideriamo una matrice $X(t)$ che dipende da un parametro $t$. In questo articolo calcoliamo la derivata dell’esponenziale di $X(t)$. Abbiamo $$ \dv{}{t} e^{X(t)} = e^{X(t)} \bqty{ \frac{1 -e^{-\mathrm{ad}_{X(t)}}} {\mathrm{ad}_{X(t)}} \pqty{\dv{X(t)}{t}} }$$ dove $\mathrm{ad}_A$ è la mappa tale che $$\mathrm{ad}_A (B) … Continua a leggere

Pubblicato in altra analisi | Lascia un commento

Ogni gruppo-$p$ è nilpotente

In un precedente articolo abbiamo classificato tutti i gruppi finiti di ordine uguale o inferiore a $8$ e inoltre abbiamo studiato i gruppi di ordine $pq$ e $p^2q$ dove $p$ e $q$ sono primi. In generale, un gruppo-$p$ è un … Continua a leggere

Pubblicato in teoria dei gruppi | Lascia un commento